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1. Introduction

One of the most fundamental trade–offs in operations is between cycle stocks and setup costs
associated with production, transportation or procurement. Larger lot sizes lead to larger
cycle stocks, while smaller lot sizes result in more orders over time and thus more setup costs.
These trade–offs are studied formally since 1913 starting with the classical Economic Order
Quantity (EOQ) model [3]. In EOQ model, a firm faces a constant and deterministic demand
of λ per unit of time, pays a setup cost of K for each replenishment order and incurs an
inventory holding cost of h per unit of inventory it keeps per unit of time. Minimizing setup
costs and inventory holding costs leads to the optimal order quantity Q∗ =

√
2Kλ/h, at which

inventory holding and setup costs are equal to each other. Since then, there has been a vast
amount of literature on lot sizing that relaxes the certain restrictive assumptions of the EOQ
model. The interested reader is referred to [5] for a recent review of research in this area.

A major cost saving opportunity in this setting is joint replenishment, i.e., consolidating
orders for different items (or locations). By carefully coordinating the replenishment of multiple
items, one can exploit the economies of scale of ordering jointly and reduce setup costs, cycle
inventories or both. Finding a joint replenishment policy to minimize the total setup costs and
inventory costs is known as the Joint Replenishment Problem in the literature. There is also
large body of research in this area: see [6] for a recent and [1] for an earlier review.

Although joint replenishment may be a significant means to reduce costs, when it involves a
group of items or locations that are not controlled centrally, it is not always apparent how to
split these savings among the parties fairly. A fair allocation is necessary to induce different
decentralized entities to engage in cooperation. Even if the items or locations are managed by
a single firm, a fair allocation is still important from a cost accounting perspective. Recently,
cooperative game theory models are developed to investigate whether a fair allocation of total
savings (or total costs) is possible and if so, how. In the first of these models, Meca et al. [8]
show that it is possible to coordinate the system (obtain minimum total cost) when the players
only share their order frequencies prior to joint replenishment. They propose an allocation
mechanism which distributes the total setup cost among the jointly replenished locations in
proportion to the square of their order frequencies and show that this allocation is in the core
of the game, i.e., the firms cannot decrease their costs further by defecting from the grand
coalition of firms. In [8], there are only major setup costs, i.e., setup costs are independent of
what items are included in the order. When there are also minor setup costs associated with
each item, it is not always optimal to order every item with every replenishment. In fact, the
structure of the policy that minimizes the total costs is not known. For this problem, Hartman
and Dror [4] show that the game with a specific group of items has a core, whenever these
items need to be ordered together on the same schedule to minimize total costs. Anily and
Haviv [2] limit their attention to the near optimal power–of–two policies for this problem, and
show the existence and example of a core allocation of total costs.

In this paper, we take a non–cooperative approach to the joint replenishment problem. To
our knowledge, [7] is the only study in the literature that follows this approach. In [7], the
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allocation of total costs is done by the rule in [8], but it is assumed that order frequencies
when the firms order independently are observable but not verifiable. Therefore, each firm
can report an order frequency that is different from its true order frequency. The joint order
frequency is determined based on the reported order frequencies and joint total costs are
incurred accordingly. It is shown that there exists a Nash equilibrium under which each firm
participates in the joint replenishment program under certain conditions, but this equilibrium
leads to higher costs than cooperative solution for each firm when there are more than 3 firms
in the game.

We use a more direct approach in our paper. We assume that each firm bids how much it
is willing to pay for each unit of its replenishment to the provider of the service, which we
call the “replenishment service provider” or RSP. The setups may be due to transportation,
production or procurement leading to different services offered by this firm. The RSP only
has the objective of ensuring a revenue of K from each replenishment. Therefore, he sets a
joint cycle length just enough to obtain K for each replenishment. Since each firm’s inventory
holding costs depend on this cycle length and this cycle length is a function of individual bids,
this is a competitive game in which each firm’s strategy is its bid per unit of its replenishment.
Our model is different from [7] in a number of important ways. First, we use a simple, direct,
and a truthful mechanism to split the ordering cost between different firms. Each firm bids
how much it is willing to pay rather than bidding untruthfully its order frequency when it
orders independently. Finally, the allocation of the order cost in our game depends directly
on the bids placed by the firms rather than an allocation that is designed for a cooperative
solution.

Our first model assumes that we have N identical firms with equal demand rates and
inventory holding cost rates, which are publicly known by all parties in the game. Our solution
concept in this game is Nash equilibrium. It is shown that, in equilibrium, each firm pays 1/N

of what it pays when ordering individually per unit of its replenishment. This leads to an order
cycle length (or frequency) which is exactly same as when ordering individually. Thus while
the total setup costs are reduced to 1/N of when ordering individually, the total inventory
holding costs remain the same. The resulting total costs are (N + 1)/2N of total costs under
independent ordering. The cooperative solution, on the other hand, can achieve a total cost of
1/
√

N of the total cost under independent ordering, since it also creates a reduction in cycle
length and thus a reduction in inventory holding costs as well as setup costs.

In the second model, we introduce private information regarding demand rates. It is assumed
that each firm’s demand rate can take one of two values (types). Each firm learns its type prior
to bidding, but does not reveal this information to other firms. Our solution concept in this
case is Bayesian Nash equilibrium. A Bayesian Nash equilibrium is a Nash equilibrium where
each player, given his type, selects a best response against the average best responses of the
competing players. The conditions for the Bayesian Nash equilibrium are derived. In this case,
the gain from the bidding game is due to the fact that more information about the demand
rates is making its way to the joint replenishment decisions of the RSP. A numerical study is
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conducted to show that the performance of the competitive solution behaves similar to the case
of full information as N increases, but information asymmetry tends to offer improvements as
N and variability in demand rates increase.

The rest of this paper is organized as follows. In Section 2, we model the competitive game
for the case of full information and derive the equilibrium conditions along with a comparison
of competitive solution with independent and cooperative ordering. In Section 3, we model
the competitive game under private information, derive the equilibrium conditions and report
the findings of a numerical study that compares the three solutions. Section 4 concludes the
paper along with avenues for future research.

2. Full Information

Assume that we have N identical firms. Each firm is facing a constant deterministic demand
with rate λ per unit of time. Inventory holding cost rate is h per unit per unit of time. The
firms order their goods from a company which we call the replenishment service provider
(RSP). The RSP, for example, may be a transportation service provider, if the setups are
due to transportation, or a manufacturing company if the setups are due to switchovers in
manufacturing. The RSP charges K per order regardless of how much is shipped. For simplicity,
assume that the variable cost is zero.

When the firms operate in a decentralized fashion and order independently, each firm has
the total cost function

Kλ

Q
+

1
2

hQ.

It is well known that each firm’s optimal order quantity and optimal cycle length are

Qd =

√
2Kλ

h
, and T d =

√
2K

λh
,

which lead to a per unit replenishment cost of

pd =
K

Qd
=

√
Kh

2λ
.

Each firm’s cost per unit of time is
√

2Kλh. Thus, the total cost for N firms in this case is

TCd = N
√

2Kλh.

When the firms fully cooperate and order jointly under a centralized scheme, the firms have
a common cycle length. The total costs for N firms can be written as

TC (T ) =
K

T
+

1
2

N λhT.

The optimal cycle length can be easily found as

T c =
1√
N

√
2K

λh
.
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The optimal total cost for the cooperative case is then

TCc =
√

N
√

2Kλh.

At each cycle, each firm orders

Qc = λ T c =
1√
N

√
2Kλ

h
,

and pays 1/N of the order cost K. This leads to a per unit replenishment cost of

pc =
K/N

Qc
=

1√
N

√
Kh

2λ
.

The benefit of joint replenishment in this setting is obvious. The total costs (and each firm’s
cost) is reduced to 1/

√
N of costs when firms order independently. Cycle length, each firms

order quantity and per unit replenishment costs are also 1/
√

N of the corresponding values
in independent ordering. With joint replenishment, firms share the order costs and they are
able to order more frequently.

We now study the competitive case as cooperation may not always be possible between these
N firms. For this case, we propose the following mechanism. Each firm bids a replenishment
cost per unit that they are willing to pay under joint replenishment. Based on these bids
and demand rates, the RSP determines the cycle length which will ensure a revenue of K for
him. We assume that the RSP is not a profit maximizer and he only aims to gain K for each
replenishment, which may be equal to his own costs plus a margin as before. Let p1, p2, ..., pN

be the bids that are placed by firms. Then the cycle length that is determined by the RSP
will be

T =
K

λ
∑N

k=1 pk

.

The costs per unit of time for firm j that bids a price of pj can be written as

φj(pj,p−j) =
1
2

hλT + pj λ =
hK

2
∑N

k=1 pk

+ pj λ (1)

where p−j is a vector of bids except the bid of firm j.
Next theorem characterizes the Nash equilibrium for this game.

Theorem 1. Any vector of bids p = (p1, p2, ..., pN) that satisfies (2) is a Nash equilibrium.

N∑

k=1

pk =

√
Kh

2λ
. (2)

Proof: Taking the derivative of (1) with respect to pj

∂φj(pj,p−j)
∂pj

=− hK

2(
∑N

k=1 pk)2
+ λ.
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Equating this to zero leads to the condition (2) for firm j. We have the same condition for all
firms. It can be easily shown that each function φj is convex in pj. Thus any vector of bids
p = (p1, p2, ..., pN) that satisfy (2) is a Nash equilibrium. ¤

As Theorem 1 states, there is a continuum of equilibria. However, since firms are identical,
we can assume that a plausible outcome of the game is a symmetric equilibrium. Such an
approach is widely used in economics literature, at least as a starting point, see for example
[9] and [10]. Nevertheless, even if we use one of the asymmetric equilibria as an outcome of
the game, our results do not change if we limit our attention to “average” firm behavior and
total costs under equilibrium. For the symmetric equilibrium, we have the following lemma.

Lemma 1. The symmetric equilibrium is

pg
j = pg =

1
N

√
Kh

2λ
, for all j.

Cycle length as a result is

T g =
K

λNpg
=

√
2K

λh
.

At each cycle, each firm orders

Qg = λ T g =

√
2Kλ

h
.

The equilibrium total cost for the firms is

TCg =
1
2

h N λ T g + pgNλ =
1
2

h N λ

√
2K

λh
+

1
N

√
Kh

2λ
Nλ =

N +1
2

√
2Kλh.

We highlight that, in equilibrium, firms order with the same frequency as when they order
independently. Their benefit from joint replenishment is only due to the fact that they can
share the order costs rather than bearing them individually. Each firm pays 1/N of what they
pay in independent ordering per unit of their order. Also notice that each firm’s inventory
holding costs is

√
Kλh/2 in equilibrium. This is exactly equal to the joint order costs in the

system.

Table 1 Full Information

Independent Cooperative Competitive

Transportation Cost Per Unit
√

Kh
2λ

1√
N

√
Kh
2λ

1
N

√
Kh
2λ

Cycle Length
√

2K
λh

1√
N

√
2K
λh

√
2K
λh

Order Quantity
√

2Kλ
h

1√
N

√
2Kλ

h

√
2Kλ

h

Total Cost N
√

2Kλh
√

N
√

2Kλh N+1
2

√
2Kλh

The results for independent ordering, joint ordering with cooperation and competition are
summarized in Table 1. As expected, the lowest total costs are obtained under joint replen-
ishment with cooperation. The total costs are 1/

√
N of the total costs under independent
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ordering. Joint replenishment under competition also leads to savings against independent
ordering, however the whole potential of joint replenishment is not exploited. The performance
of the competitive solution can be measured as percentage of maximum savings that can be
obtained through joint replenishment. We can define this measure as:

100× N − (N +1)/2
N −√N

= 100× N − 1
2(N −√N)

. (3)

3. Asymmetric Information

We now turn our attention to the case of private information for joint replenishment. We
assume that h is known and constant among N firms. We assume that each firm’s demand
rate can take one of two values: a high value λH with probability q and a low value λL with
probability (1− q) (A similar analysis can be carried out when the uncertainty is defined for
h rather than λ). In the case of independent ordering, we assume that each firm learns its
demand rate (type) prior to determining its order quantity. In the case of joint ordering with
cooperation, we assume that demand rates of all firms are known prior to establishing the joint
replenishment cycle length. In the case of joint ordering with competition, we assume that
each firm learns its type prior to bidding, but does not share this information with other firms.
However, the RSP has access to demand rate information of all firms, prior to determining
the cycle length that will ensure a revenue of K per replenishment order.

With independent ordering, each firm sets its order quantity based on his type. Following
the analysis in Section 2, a firm of type H has the optimal order quantity, cycle length, cost
per unit of time, and replenishment cost per unit:

Qd
H =

√
2KλH

h
, T d

H =
√

2K

λHh
, Cd

H =
√

2KλHh, and pd
H =

√
Kh

2λH

.

Corresponding values for a firm of type L are:

Qd
L =

√
2KλL

h
, T d

L =
√

2K

λLh
, Cd

L =
√

2KλLh, and pd
L =

√
Kh

2λL

.

Let n be the number of firms that are type H. It is well known that n has a binomial
distribution with N and q. Thus, the expected total cost for the case of independent ordering
can be written as:

ETCd =
N∑

n=0

(
N

n

)
qn(1− q)N−n

[
n
√

2KλHh +(N −n)
√

2KλLh
]

= N
[
q
√

2KλHh +(1− q)
√

2KλLh
]
.

Similar derivations will lead to average optimal cycle length, average order quantity, and
average replenishment cost per unit expressions similar to those given in Table 1 column 1
except that we now use a weighted average of corresponding expressions for high and low
types.
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With joint ordering under cooperation, the joint replenishment cycle length is decided after
the types of all firms are observed. Given that there are n firms of type H, the total cost can
be written as a function of T as follows:

TC(T,n) =
K

T
+

1
2

h [nλH +(N −n)λL]T.

The optimal cycle length can be easily found as:

T c(n) =

√
2K

h [nλH +(N −n)λL]

This leads to the following total costs for a given n

TCc(n) =
√

2Kh [nλH +(N −n)λL].

Since n has a binomial distribution with N and q, we can write the expected cycle length and
expected total cost as:

ET c =
N∑

n=0

(
N

n

)
qn(1− q)N−n

√
2K

h [nλH +(N −n)λL]
, and

ETCc =
N∑

n=0

(
N

n

)
qn(1− q)N−n

√
2Kh [nλH +(N −n)λL].

Replenishment cost per unit for a given n is:

p c(n) =
K

T c(n)[nλH + (N −n)λL]
=

√
Kh

2 [nλH +(N −n)λL]
.

Then, the expected replenishment cost per unit can be calculated as

pc =
N∑

n=0

(
N

n

)
qn(1− q)N−n

√
Kh

2 [nλH +(N −n)λL]
.

We now study joint ordering with competition under asymmetric information. The sequence
of events in this case is as follows. First each firm learns its demand rate (type). Then each firm
bids the price per unit that it wants to pay for replenishment. Each firm then communicates
its demand rate with the RSP. The RSP sets the cycle length of the joint order such that he
obtains a revenue of K per trip. Finally, the firms incur their costs according to this cycle
length.

Let pjH is the price that firm j bids if its demand is low. Similarly define pjL. Let v =
(v1, v2, . . . , vN) represent a realization of demand rates such that vj = 1 if the demand rate for
firm j is λH and vj = 0 if the demand rate for firm j is λL in realization v. Then, for a given
v the RSP will set the cycle length

T (v) =
K

λH

∑N
k=1 vkpkH + λL

∑N
k=1(1− vk)pkL

.
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Consider a firm j with a high type. The expected payoff for this firm can be written as

φjH(pjH ,p−j) =
1
2

hλH

∑
v

cjH (v)T (v)+ pjH λH . (4)

Similarly for a firm j with a low type, the expected payoff can be written as

φjL(pjL,p−j) =
1
2

hλL

∑
v

cjL (v)T (v)+ pjL λL. (5)

In (4) and (5), cjH (v) and cjL (v) inside the summations are the conditional probabilities of
realization v, given firm j has a high type and a low type, respectively. These conditional
probabilities can be written as follows:

cjH (v) =
{

0, if vj = 0,

q
PN

k=1 vk−1(1− q)N−PN
k=1 vk , if vj = 1,

cjL (v) =
{

0, if vj = 1,

q
PN

k=1 vk(1− q)N−PN
k=1 vk−1, if vj = 0.

The next theorem characterizes the Bayesian Nash equilibrium for the asymmetric infor-
mation game.

Theorem 2. Any two vectors of bids pH = (pH1, pH2, ..., pHN) and pL = (pL1, pL2, ..., pLN)
that satisfy (6) and (7) are a Bayesian Nash equilibrium.

∑
v

cjH (v)
[λH

∑N
k=1 vkpkH + λL

∑N
k=1(1− vk)pkL]2

=
2

hKλH

, for all j, (6)

∑
v

cjL (v)
[λH

∑N
k=1 vkpkH +λL

∑N
k=1(1− vk)pkL]2

=
2

hKλL

, for all j. (7)

Proof: Taking the derivatives of (4) and (5) with respect to pjH and pjL respectively and
setting them to zero will lead to

∂φjH(pjH ,p−j)
∂pjH

=−
∑
v

hK(λH)2cjH (v)
2 [λH

∑N
k=1 vkpkH +λL

∑N
k=1(1− vk)pkL]2

+ λH = 0,

∂φjL(pjL,p−j)
∂pjL

=−
∑
v

hK(λL)2cjL (v)
2 [λH

∑N
k=1 vkpkH +λL

∑N
k=1(1− vk)pkL]2

+ λL = 0,

Simplifying and reorganizing lead to the desired conditions. It can also be easily verified that
the functions φjH and φjL are convex in pjH and pjL which completes the proof. ¤

As in Section 2, we restrict ourselves to symmetric equilibrium, and use the following lemma.

Lemma 2. The symmetric Bayesian Nash equilibrium (pg
H , pg

L) satisfies the following

N−1∑
n=0

(
N − 1

n

)
qn(1− q)N−n−1 1

[(n+1)pg
HλH +(N −n− 1)pg

LλL]2
=

2
hKλH

, (8)

N−1∑
n=0

(
N − 1

n

)
qn(1− q)N−n−1 1

[npg
HλH +(N −n)pg

LλL]2
=

2
hKλL

. (9)
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Proof: Having pjH = pH and pjL = pL lead us to work with only the number of high types
(n) among N − 1 firms other than firm j, which has a binomial distribution with parameters
N − 1 and q. Taking the expectation in (4) and (5) over n, and taking the derivative with
respect to pH and pL, we can write the first order conditions as:

−
N−1∑
n=0

(
N − 1

n

)
qn(1− q)N−n−1 hK(λH)2

2[(n+1)pHλH +(N −n− 1)pLλL]2
+ λH = 0

−
N−1∑
n=0

(
N − 1

n

)
qn(1− q)N−n−1 hK(λL)2

2[npHλH +(N −n)pLλL]2
+ λL = 0

Simplifying and reorganizing lead to the desired condition. ¤
Note that the last terms inside summations in the left hand sides of equations (8) and (9)

are 1/K2 times the cycle length given one firm is a particular type and n of the remaining firms
are high type. Multiplying both sides of (8) and (9) by hKλH/2 and hKλL/2, respectively,
leads to an interesting interpretation. In equilibrium, each firm, given its type, bids such that
the expected value of its own inventory holding cost divided by the joint order cost is equal
to 1. This is an extension of a similar equilibrium behavior in the full information case, where
each firm bids such that one firm’s inventory holding costs are equal to the joint order costs.

For a given number of high types (among N firms), the cycle length is given as

T (n) =
K

pg
HnλH + pg

L(N −n)λL

.

Then, the total cost for all firms for a given number of high types can be written as

TC(n) =
1
2

h [nλH + (N −n)λL]
K

pg
HnλH + pg

L(N −n)λL

+ pg
HnλH + pg

L(N −n)λL.

The expected cycle length and expected total cost for all firms are then given as follows

ET g =
N∑

n=0

(
N

n

)
qn(1− q)N−nT (n), and

ETCg =
N∑

n=0

(
N

n

)
qn(1− q)N−nTC(n),

since n has a binomial distribution with parameters N and q.
We conduct a limited computational study to see the impact of information asymmetry

on the total costs. In Table 2, we provide the expected cycle lengths and expected total
costs for different N and q obtained in three cases: independent ordering, joint ordering with
cooperation, and joint ordering with competition. We also report the equilibrium bids when
for the low and high type firms for the competition case. We measure the performance of
the competitive solution as the percentage of maximum savings that can be obtained through
joint replenishment, i.e.,

100× ETCd−ETCg

ETCd−ETCc
.
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Table 2 Asymmetric Information: λH = 20, λL = 10, K = 80, h = 1

Independent Cooperative Competitive
q N ET d ETCd ET c ETCc pg

L pg
H ET g ETCg % Perf

0.25 2 3.71 88.28 2.58 62.80 0.9335 0.8728 3.67 66.49 85.51
0.25 3 3.71 132.43 2.10 77.09 0.5797 0.6878 3.64 88.45 79.46
0.25 4 3.71 176.57 1.81 89.12 0.4040 0.5920 3.61 110.03 76.09
0.25 5 3.71 220.71 1.61 99.71 0.2995 0.5318 3.58 131.23 73.95
0.25 10 3.71 441.42 1.14 141.21 0.0979 0.3921 3.43 232.22 69.69
0.50 2 3.41 96.57 2.36 68.78 0.8558 0.8273 3.37 72.78 85.63
0.50 3 3.41 144.85 1.91 84.45 0.4814 0.6253 3.32 96.62 79.86
0.50 4 3.41 193.14 1.65 97.63 0.2996 0.5194 3.28 119.85 76.74
0.50 5 3.41 241.42 1.47 109.23 0.1947 0.4520 3.23 142.51 74.83
0.50 10 3.41 482.84 1.04 154.70 0.0217 0.2840 3.06 249.49 71.11
0.75 2 3.12 104.85 2.17 74.52 0.7569 0.7751 3.08 78.87 85.63
0.75 3 3.12 157.28 1.76 91.40 0.3583 0.5572 3.04 104.69 79.82
0.75 4 3.12 209.71 1.52 105.62 0.1727 0.4440 3.01 129.95 76.63
0.75 5 3.12 262.13 1.36 118.13 0.0760 0.3716 2.98 154.72 74.59
0.75 10 3.12 524.26 0.96 167.20 0.0007 0.1922 2.89 277.16 69.21

Table 2 shows that as expected, the firms bid lower prices as N increases and the perfor-
mance of the competitive solution deteriorates. Note that for the case of full information, the
performance of the competitive game given in (3) gives 85.36, 78.87, 75.00, 72.36 and 65.81 for
N=2, 3, 4, 5 and 10, respectively. The performance of the competitive solution with asymmet-
ric information is consistently better than these values and the gap increases as N grows. We
also see that the competitive solution performs the best when q = 0.50, i.e., when the demand
rate variability is highest. An interesting observation is that a high type firm may bid lower
than a low type firm (for N = 2, q = 0.25,0.50) in equilibrium.

Table 3 Asymmetric Information: λH = 12, λL = 10, K = 80, h = 1

Independent Cooperative Competitive
q N ET i ETCi ET c ETCc pg

L pg
H ET g ETCg % Perf

0.25 2 3.91 81.91 2.76 57.94 0.9786 0.9742 3.91 61.45 85.37
0.25 3 3.91 122.86 2.26 70.97 0.6382 0.6902 3.91 81.91 78.92
0.25 4 3.91 163.82 1.95 81.96 0.4680 0.5481 3.90 102.35 75.10
0.25 5 3.91 204.77 1.75 91.64 0.3659 0.4627 3.90 122.75 72.50
0.25 10 3.91 409.55 1.23 129.60 0.1621 0.2912 3.89 224.32 66.17
0.50 2 3.83 83.82 2.70 59.30 0.9558 0.9551 3.82 62.89 85.37
0.50 3 3.83 125.73 2.20 72.64 0.6079 0.6647 3.82 83.82 78.94
0.50 4 3.83 167.64 1.91 83.88 0.4341 0.5194 3.81 104.71 75.14
0.50 5 3.83 209.55 1.71 93.79 0.3299 0.4321 3.81 125.56 72.56
0.50 10 3.83 419.09 1.21 132.65 0.1224 0.2566 3.79 229.16 66.31
0.75 2 3.74 85.73 2.64 60.64 0.9313 0.9348 3.74 64.31 85.37
0.75 3 3.74 128.59 2.16 74.28 0.5753 0.6377 3.73 85.72 78.93
0.75 4 3.74 171.45 1.87 85.78 0.3975 0.4891 3.73 107.10 75.11
0.75 5 3.74 214.32 1.67 95.90 0.2910 0.3999 3.73 128.45 72.52
0.75 10 3.74 428.63 1.18 135.64 0.0790 0.2211 3.71 234.65 66.21
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We repeat the analysis for λL = 10 and λH = 12 in Table 3. The results are similar except
that the performance of the competitive solution is slightly worse. This is again due to the
impact of variability.

4. Conclusion

We study a competitive joint replenishment game with N identical firms. In this game, each
firm places a bid that specifies how much it is willing to pay per unit of its replenishment
and a common supplier determines the joint order cycle length based on these bids. It is
shown that, in equilibrium, the firms’ bids are such that joint order frequency is same as the
order frequencies when the firms order independently. Thus, inventory holding costs remain
the same, but the order costs reduce to 1/N of the order costs when ordering independently,
leading to a total cost of (N + 1)/2N of total costs when ordering independently. This is
certainly more than 1/

√
N of total costs that can be obtained under cooperation. We extend

the model for the case of private information about demand rates and characterize the Bayesian
Nash equilibrium. It is shown that information asymmetry may offer some improvements to
the performance of the competitive solution.

The model in this paper is fairly simple and can be extended in several important directions.
First, the bidding process can be enriched perhaps by allowing each firm to bid a menu of
contracts that includes pairs of order frequencies and how much it wants to pay per unit of
replenishment for that frequency. Second, capacities may be introduced on replenishment sizes
that can be set by the RSP, reflecting, for example, the truck sizes for the transportation
and maximum batch sizes in production. Finally, the impact of non–identical firms and minor
setup costs can be investigated.
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