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Abstract

Motivation: Synthesizing proteins in heterologous hosts is an important tool in biotechnology. However,
the genetic code is degenerate and the codon usage is biased in many organisms. Synonymous codon
changes that are customized for each host organism may have a significant effect on the level of protein
expression. This effect can be measured by using metrics such as Codon Adaptation Index, Codon Pair
Bias, Relative Codon Bias and Relative Codon Pair Bias. Codon optimization is designing codons that
improve one or more of these objectives. Currently available algorithms and software solutions either
rely on heuristics without providing optimality guarantees or are very rigid in modeling different objective
functions and restrictions.
Results: We develop an effective mixed integer linear programming (MILP) formulation which considers
multiple objectives. Our numerical study shows that this formulation can be effectively used to generate
(Pareto) optimal codon designs even for very long amino acid sequences using a standard commercial
solver. We also show that one can obtain designs in the efficient frontier in reasonable solution times and
incorporate other complex objectives such as mRNA secondary structures in codon design using MILP
formulations.
Availability: http://alpersen.bilkent.edu.tr/codonoptimization/CodonOptimization.zip
Contact: alpersen@bilkent.edu.tr
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
A codon is a sequence of three nucleotides that encodes for a specific
amino acid in the synthesis of a protein. There are 64 distinct codons, but
only 20 amino acids leading to the degeneracy of the genetic code. For
instance, the amino acid Leucine can be encoded with six synonymous
codons CUU, CUC, CUA, CUG, UUA and UUG whereas Cysteine can be
encoded with two codons UGU and UGC. Overall, two of the 20 amino
acids can be encoded with one codon, nine with two codons, one with
three codons, five with four codons and three with six codons leading to
61 essential codons. The remaining three codons are stop codons and are
reserved for termination of protein formation. Codon degeneracy leads to
many possible ways of encoding a protein, e.g., a typical 375-amino acid
protein in humans can be potentially encoded by 10207 different codon
sequences. All possible encodings and resulting sequences are not equally
likely to be observed in nature, however, as some synonymous codons are
more frequently used than others in encoding a particular amino acid in
a particular organism. This phenomenon is called “codon usage bias” or
“codon bias”. As an example, Leucine is encoded 39.5% of the time with

codon CUG in Homo sapiens, whereas the same codon is used 11.1% of
the same amino acid’s encoding in Saccharomyces cerevisiae (Nakamura
et al., 2000).

Gene synthesis is now an important tool in many fields including produ-
ction of bio-pharmaceuticals, diagnosis of diseases, vaccine development
and gene therapy. Synthetic genes are inserted into the genetic material of
various host organisms such as bacteria and yeast to express and produce
proteins. While researchers continue to identify new factors that affect the
level of gene expression on host organisms, the effect of codon bias has
long been known (Gouy and Gautier, 1982, Bennetzen and Hall, 1982). In
fact, codon usage is shown to be the single most important factor in gene
expression (Lithwick and Margalit, 2003). Using more frequently obse-
rved codons in the host organism instead of rarely observed ones increases
the efficiency of the translation and the level of expression. Drastic –as
much as 105-fold– improvements in expression levels are possible when
right codons are used in the design of genes (Gustafsson et al., 2004).

In order to measure how successful a particular design is in its use of
codons that are more frequently observed in a host organism, Sharp and Li
(1987) developed a metric called Codon Adaptation Index. This metric is
based on what is called the fitness value of a codon for expressing an amino
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acid in a particular species. The fitness value of a codon is the ratio of its
observed frequency to the observed frequency of the most frequent codon.
For example for Cysteine, the observed frequencies of codons UGC and
UGU in humans are 54.3% and 45.7%, respectively. This leads to fitness
values τ(Cysteine, UGC) = 1 and τ(Cysteine, UGU) = 0.457/0.543 =

0.842. Formally, the fitness value of codon k in expressing amino acid i

is given by τ(γi, σk) = φc
k/maxℓ∈Ki

φc
ℓ where φc

ℓ is the observed
frequency of codon ℓ in the species in consideration and Ki is the set
of codons that can be used to express amino acid i. For a given amino
acid sequence γ = (γ1, γ2, . . . , γN ) of length N , the Codon Adaptation
Index (CAI) of a codon sequence σ = (σ1, σ2, . . . , σN ) is given by

CAI(γ, σ) =

(
N∏
i=1

τ(γi, σi)

)1/N

. (1)

Clearly, CAI of a given codon sequence is between 0 and 1. Under no other
restrictions, obtaining a CAI value of 1 is possible, which corresponds to
using the most frequent codon for every amino acid.

Coleman et al. (2008) show that Codon Pair Bias, i.e., the use of codon
pairs that are more frequent in a host organism improves the level of gene
expression. For example, while codons GCC and UGC are used 39.9% and
54.3% of the time in expressing amino acids Alanine and Csyteine in Homo
sapiens, respectively (leading to an expected frequency of 21.7% for the
GCC-UGC codon pair), the observed frequency of codon pair GCC-UGC
in Homo sapiens is 36.9%. Buchan et al. (2006) show that codon pairing
is biased in a diverse range of species and genomes. Coleman et al. (2008)
suggest an index called Codon Pair Bias (CPB) to measure the extent to
which a codon sequence uses the frequently observed codon pairs. For
a codon sequence σ = (σ1, σ2, . . . , σN ) that encodes an amino acid
sequence γ = (γ1, γ2, . . . , γN ), this index is defined as

CPB(γ, σ) =

∑N−1
i=1 CPS(γi, σi, γi+1, σi+1)

(N − 1)
, (2)

where CPS(γi, σk, γj , σℓ) is defined as Codon Pair Score that compares
the frequency of codon pair (σk ,σℓ) in encoding amino acid pair (γi,γj )
relative to that expected by chance given the frequencies of each codon in
the host organism. CPS is defined formally as follows:

CPS(γi, σk, γj , σℓ) = ln

(
φc
kℓ φ

a
i φa

j

φa
ij φ

c
k φc

ℓ

)
. (3)

In this case, φa denotes the observed frequency of amino acids or pairs
of amino acids in the species of interest. The CPS score for a given pair
determines if the pair is over-represented (+) or under-represented (–) in
the genome of a given species (Coleman et al., 2008). Overall, a high value
of CPB for a codon design means that the design uses more of the more
frequent pairs and less of the less frequent pairs.

Gustafsson et al. (2004) argue that maximizing Codon Adaptation
Index (which corresponds to so-called “one amino acid - one codon” appro-
ach, where one always attempts to encode an amino acid with the same
codon) may often lead to translational errors due to imbalanced use of a
subset of the tRNA. It is suggested that the objective should be to minimize
the deviations from observed codon frequency of the host organism rather
than to maximize the use of the most frequent codon. For this purpose,
we define a metric RCB(γ, σ) which measures how a codon sequence σ

deviates from observed codon frequency when it is used to express amino
acid sequence γ. This is formally defined as follows

RCB(γ, σ) =
∑
i∈A

ηi(γ)

N

∑
j∈Ki

1

|Ki|

∣∣∣∣∣ϑj(σ)

ηi(γ)
−

φc
j

φa
k

∣∣∣∣∣ , (4)

where Ki is the set of codons that can be used to express amino acid i (and
|Ki| is its cardinality), ηi(γ) is the number of times amino acid i appears

in the amino acid sequence γ and ϑj(σ) is the number of times codon
j appears in the codon sequence σ. This metric is similar to one defined
in Fox and Erill (2010) for measuring codon usage difference of a gene
relative to a class of genes. Smaller values of RCB(γ, σ) correspond to
codon designs that closely match observed codon usage in a given species.

Similar to Relative Codon Bias, one can define a metric which measures
how one particular codon design deviates from the observed frequencies of
the codon pairs. Formally, this is called Relative Codon Pair Bias (RCPB)
and defined as follows:

RCPB(γ, σ) =∑
i,j∈A

ηij(γ)

N − 1

∑
k∈Ki,ℓ∈Kj

1

|Ki||Kj |

∣∣∣∣∣ϑkℓ(σ)

ηij(γ)
−

φc
kℓ

φa
ij

∣∣∣∣∣ , (5)

where ηij(γ) is the number of times amino acid pair ij appears in the
amino acid sequence γ and ϑkℓ(σ) is the number of times the codon pair
kℓ appears in codon design σ.

The objective in codon optimization is to use synonymous codon chan-
ges in the gene such that one or more of the metrics mentioned above are
optimized; eventually leading to an increase in protein production. In some
cases, one also needs to ensure that certain forbidden motifs (nucleotide
sub-sequences) are avoided and certain desired motifs are included. Given
an extremely large number of possible codon designs, various software
solutions are developed to support codon optimization over the years. Pio-
neering solutions in this area typically use a single objective (mainly CAI,
requiring one to only substitute rare codons with codons that are most
frequently observed in the host organism) and are reviewed in Villalo-
bos et al. (2006). Clearly, the problem is a multi-objective one in nature,
requiring more than one metric to be optimized simultaneously. Recent
software solutions in this area such as COOL (Chin et al., 2014), D-Tailor
(Guimaraes et al., 2014), COStar (Liu et al., 2014) and EuGene (Gaspar
et al., 2012) are able to handle multiple objectives and are reviewed in
detail in Webster et al. (2017). A more comprehensive review of codon
optimization algorithms and software solutions is provided in Gould et al.
(2014). As also noted by the reviews, these solutions rely on heuristics and
do not provide guarantees on solution optimality.

One exception in literature is a study by Condon and Thachuk (2012)
who developed a dynamic programming algorithm that optimizes three
objectives sequentially. In addition to this work, Papamichail et al. (2018)
show that a codon design which maximizes (or minimizes) CPB while
ensuring that the individual codon frequencies (thus CAI) remain constant
can be obtained using dynamic programming with a worst-case complexity
of O(N42) where N is the size of the sequence. Given that this is impra-
ctical for typical genes, Papamichail et al. (2018) resort to a simulated
annealing heuristic. The present paper is the first to adopt a mathematical
programming approach for the codon optimization problem. For the same
problem that Papamichail et al. (2018) consider, our numerical results
show that the mathematical approach we follow leads to significantly bet-
ter sequences in terms of CPB in significantly shorter solution times. This
study is also the first one that provides a mathematical guarantee of solu-
tion optimality for objectives involving Relative Codon Bias and Relative
Codon Pair Bias.

We follow a mixed integer linear programming approach for codon
optimization. A mixed integer linear program (MILP) is an optimization
problem of the form min cTx s.t. Ax ≤ b where c is a vector in
Rm+n, b is a vector in Rp, A is an (m + n) × p matrix and decision
variables x ∈ Zm × Rn. While MILP is an NP-Hard problem, many
scientific and commercial solvers are developed over the years and are in
use for many successful real life applications. In our case, we use integer
(binary) variables to specify whether a particular codon is used to encode
a given amino acid in the protein to be expressed and other decision vari-
ables to represent the metrics in terms of codon assignments. We use the
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four metrics CAI, CPB, RCB and RCPB as our objectives. In our first
model, we use CAI and CPB in a bi-objective framework. In the second
model, we use RCB and RCPB as our objectives. For both models, we
can compute a set of solutions in the efficient frontier. In Section 5, we
extend our formulation to consider secondary structures. Our results show
that the mathematical programming approach we follow is robust; these
and other various objectives and constraints can easily be incorporated in
the formulations and truly optimal (or Pareto optimal) gene designs can
be obtained for regular sized proteins in acceptable solution times.

2 Approach
We develop a mixed integer linear programming (MILP) formulation for
the codon optimization problem. The problem is a multi-objective optimi-
zation problem in nature as there are possibly more than one objective. In
this paper, we consider the four objectives described in Section 1. Although
more than two objectives can be easily handled, we present formulations
for two bi-objective problems. We use the so-called ϵ-constraint approach,
where one optimizes one objective function and the remaining objective
is used as a constraint to create Pareto-optimal solutions.

Our first formulation (MaxCPBstCAI) maximizes Codon Pair Bias
subject to Codon Adaptation Index not falling below a specified value
(αCAI ). We denote A to be the set of 20 amino acids, K to be the set
of 61 codons. For each amino acid i, Ki represents the set of codons that
amino acid i can be expressed with (∪i∈AKi = K). In addition, the
model requires the CPS scores for each amino acid pair and codon pair for
the host organism. Finally, the user needs to input αCAI , the minimum
value of Codon Adaptation Index for the codon design. The model uses
two types of decision variables. First, for all i = 1, . . . , N and k ∈ K[i]

([i] stands for the specific amino acid in the ith place in the sequence), we
define

xik =

{
1, if ith amino acid is assigned to codon k,

0, otherwise.

We also define, for all i = 1, . . . , N − 1, j ∈ K[i] and k ∈ K[i+1]

zikℓ =

{
1, if ith and i+ 1st amino acids are assigned to codons k and ℓ

0, otherwise.

We are now ready to present our formulation.

(MaxCPBstCAI)

max

∑N−1
i=1

∑
j∈K[i],k∈K[i+1]

CPS([i], j, [i+ 1], k) zijk

(N − 1)

(6)

s.t.
∑

k∈K[i]

xik = 1, i = 1, . . . , N, (7)

zikℓ −
1

2

(
xi,k + xi+1,ℓ

)
≤ 0, i = 1, . . . , N − 1,

∀k ∈ K[i], ℓ ∈ K[i+1], (8)

N∑
i=1

∑
k∈K[i]

ln(τ([i], k))xik ≥ N ln(αCAI), (9)

xik ∈ {0, 1}, i = 1, . . . , N,

∀k ∈ K[i], (10)

zikℓ ∈ {0, 1}, ∀i = 1, . . . , N − 1,

∀k ∈ K[i], ∀ℓ ∈ K[i+1]. (11)

The objective function (6) ensures that Codon Pair Bias is maximi-
zed. Constraint (7) ensures that each amino acid is assigned to exactly
one codon. Constraint (8) ensures that the variable zijk can be set to
1 only if amino acid i is assigned to codon j and amino acid i + 1 is
assigned to codon k. Constraint (9) ensures that the codon adaptation
index of the codon design does not fall below a specified input value and
uses the fact that ln(CAI(γ, σ)) = 1

N

∑N
i=1 ln(τ(γi, σi)). Constraints

(10) and (11) express that the decision variables are binary. The formu-
lation (MaxCPBstCAI) has O(N) binary decision variables and O(N)

constraints.
Our second model (MinRCPBstRCB) minimizes Relative Codon Pair

Bias subject to Relative Codon Bias not exceeding a specified value. For
a given amino acid sequence γ, the model requires the number of times
each amino acid appears (ηi(γ), i ∈ A) and the number of times each
amino acid pair appears (ηij(γ), i, j ∈ A). In addition, the observed
frequencies of amino acids (φa

i , i ∈ A), amino acid pairs (φa
ij , i, j ∈ A),

codons (φc
k, k ∈ K) and codon pairs (φc

kℓ, k, ℓ ∈ K) are required for
the species at which the gene is to be expressed.

(MinRCPBstRCB)

min
∑

i,j∈A

ηij(γ)

N − 1

∑
k∈Ki,ℓ∈Kj

1

|Ki||Kj |
ekℓ

(12)

s.t.
∑

k∈K[i]

xik = 1, i = 1, . . . , N, (13)

zikℓ −
1

2

(
xi,k + xi+1,ℓ

)
≤ 0, i = 1, . . . , N − 1,

∀k ∈ K[i], ℓ ∈ K[i+1], (14)

ekℓ −
1

ηij(γ)

N∑
h=1

zhkℓ +
φc
kℓ

φa
ij

≥ 0,

∀i, j ∈ A, ∀k ∈ Ki,∀ℓ ∈ Kj , (15)

ekℓ +
1

ηij(γ)

N∑
h=1

zhkℓ −
φc
kℓ

φa
ij

≥ 0,

∀i, j ∈ A, ∀k ∈ Ki,∀ℓ ∈ Kj , (16)∑
i∈A

ηi(γ)

N

∑
k∈Ki

1

|Ki|
dk ≤ αRCB , (17)

dk −
1

ηi(γ)

N∑
h=1

xhk +
φc
k

φa
i

≥ 0, ∀i ∈ A,∀k ∈ Ki, (18)

dk +
1

ηi(γ)

N∑
h=1

xhk −
φc
k

φa
i

≥ 0, ∀i ∈ A,∀k ∈ Ki, (19)

xik ∈ {0, 1}, i = 1, . . . , N,

∀k ∈ K[i], (20)

zikℓ ∈ {0, 1}, ∀i = 1, . . . , N − 1,

∀k ∈ K[i], ∀ℓ ∈ K[i+1],

(21)
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dk ≥ 0, ∀k ∈ K, (22)

ekℓ ≥ 0, ∀k, ℓ ∈ K. (23)

The objective function in (12) minimizes Relative Codon Pair Bias. Con-
straints (15) and (16) are used to linearize the absolute value function
required for the deviation of frequency of codon pairs in the design from
that of what is observed in the species. The constraint (17) ensures that the
Relative Codon Bias does not exceed a specified value. The constraints
(18) and (19) are used to linearize the absolute value function for the
deviation of frequency of codons in the design from observed frequency.
Finally, constraints (22) and (23) state that the decision variables used for
frequency deviations are non-negative continuous variables. The formu-
lation (MinRCPBstRCB) has O(N) binary variables and a fixed number
(|K|2 + |K|) of continuous decision variables and O(N) constraints.

3 Methods
The mathematical programming formulation developed in Section 2 is
modeled using Gurobi Python interface (http://www.gurobi.com). The
Python code reads as input i-) amino acid sequence for the protein to
be expressed in the host organism ii-) the objectives to be considered iii-)
observed frequencies of amino acids and codons (and their pairs) in the
desired host organism and iv-) user specified values for the other objectives.

The first step in the program is to add decision variables for the chosen
model. The program then adds the objective provided in (6) or (12). The
program then adds constraints. The program then solves the model chosen
and outputs the final codon design in a text file, along with the value of the
objective function(s) that are chosen.

4 Results
In order to evaluate the effectiveness of our MILP formulations, we used
protein sequences from the UniProt Database (The UniProt Consortium,
2018). The Uniprot Database had information for 559,634 proteins at the
time of accession. The number of amino acids in a protein in this database
range from minimum 2 to a maximum 35,213 with a median of 294. We
sampled two proteins from each fifth percentile (in the number of amino
acids) leading to a total number of 40 proteins to be analyzed. Codon pair
frequencies for only Homo sapiens were available in Coleman et al. (2008),
therefore we did the analysis for Homo sapiens. The codon frequencies
are obtained from Codon Usage Database (Nakamura et al., 2000).

MILP formulation is developed using Gurobi’s Python (version 3.7.2)
interface and the models are solved using Gurobi solver version 8.1.1.
All problems are run on a computer with a 2.3 GHz processor and 2 GB
main memory, running on Windows version 10. All problems are solved
to optimality with the default settings of Gurobi. The exception is the
parameter MIPGap (set to 0.001), which is the gap between lower and
upper objective bounds, below which the solver will conclude that it found
the optimal solution and terminate.

In our first model, we maximize Codon Pair Bias subject to Codon
Adaptation Index not falling below a specified value using the model
(MaxCPBstCAI). We use ten different values for CAI in the range (0.55,
1.00) with 0.05 increments. For each CAI value a separate model is run.
An example of such analysis is shown for a 367 amino acid protein with
ID RL10_PROM0 in Figure 1. Codon Pair Bias can be as low as -0.046
when CAI is 1.0 (when one uses the most frequent codon for every amino
acid), and as high as 0.386 when CAI is allowed to be 0.55. The other
points in the plot correspond to different Pareto-optimal solutions found
by the model creating the efficient frontier for CPB and CAI.

The solution times for all of our experiments for CPB versus CAI are
shown in Figure 2. (Model building times are excluded from these times.
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Fig. 1. An efficient frontier of Codon Pair Bias and Codon Adaptation Index - Protein
RL10_PROM0 : Each point in the plot is obtained running the model (MaxCPBstCAI)
once and corresponds to a codon design which maximizes CPB subject to CAI not falling
below a specified value.
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Fig. 2. Solution times (secs) for Codon Pair Bias and Codon Adaptation Index: Solution
times are for one run of the model (MaxCPBstCAI) and exclude model building times.

Model building times are 1.20 seconds for the smallest protein and 18.94
for the largest protein. We note that for the same protein with different
CAI values, the model has to be built only once). Each point in the graph
corresponds to a single run of the model (MaxCPBstCAI) for one protein
and one CAI value. Overall, solution time increases as the number of
amino acids in the sequence increases, but all solution times are below
6 seconds. We also ran our model for the largest protein in the UniProt
Database which has 35,213 amino acids. The solver was able to generate
an optimal solution (for a given CAI value) in roughly 5800 seconds. For
these very rare extremely large proteins, one can consider splitting the
sequence into smaller pieces and running separate optimization models to
generate near-optimal solutions in more reasonable times.

We also compare our results with the simulated annealing approach
proposed by Papamichail et al. (2018). We use the Codon Context Eva-
luation Tool (CCTool) developed by Papamichail et al. (2018) which is
available at http://algo.tcnj.edu/cctool. This tool receives a nucleotide
sequence and uses a simulated annealing algorithm to maximize the Codon
Pair Bias subject to Codon Adaptation Index not falling below CAI of the
original sequence. In order to find the input sequences, we run the model
(MaxCPBstCAI) but this time with a minimization objective for nine dif-
ferent values of αCAI (0.55, 0.60, …, 0.95) and for forty proteins that
we sample from the UniProt Database, resulting in 360 sequences. We set
the number of iterations to 500,000 (the default was 5,000) and let the tool
maximize CPB for each sequence. We record the objective function values
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Fig. 3. Comparison of our model with CCTool: The primary y-axis and squares represent
the performance gap of the CCTool against our model (100 × (CCTool-model)/model) for
the solution time; the secondary y-axis and circles are represent the performance gap of the
CCTool against our model for the objective (CPB) quality.

and solution times and compare them with the results we obtain using our
model.

For all input sequences, the sequence obtained by CCTool has a strictly
smaller CPB value and the solution time was longer than those obtained
using our model. CPB value obtained by CCTool was, on the average,
37.46% smaller than CPB value obtained by our model (minimum 14.50%,
maximum 128.70%). The solution time using CCTool was, on the average,
4021.19% longer than the solution time of our model (minimum 223.28%,
maximum 23275.00%). All comparative results are reported in Figure 3.
Overall, our model performs significantly better than the CCTool, both in
terms of solution time and solution quality (objective value). We finally
note that using smaller number of iterations (5,000 or 50,000) in CCTool
may decrease solution times. However, our approach still outperforms
CCTool in solution time and the performance gap in terms of solution
quality increases substantially, especially for large sequences.

In our second model, we minimize Relative Codon Pair Bias subject
to Relative Codon Bias not exceeding a specified value. We use ten diffe-
rent values for Relative Codon Bias in the range (0.055,0.100) with 0.005
increments. For each value of RCB, a separate model (MinRCPBstRCB)
is run. An example of our analysis with protein RL10_PROM0 is shown
in Figure 4. For RCB not exceeding 0.10, one can find a codon design for
which RCPB is roughly 0.1332. When RCB is not allowed to be above
0.055, the best codon design has a RCPB around 0.1358.
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Fig. 4. An efficient frontier of Relative Codon Pair Bias and Relative Codon Bias - Protein
RL10_PROM0: Each point in the plot is obtained running the model (MinRCPBstRCB)
once and corresponds to a codon design which minimizes RCPB subject to RCB not being
above a specified value.
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Fig. 5. Solution times for Relative Codon Pair Bias and Relative Codon Bias: Solution
times are for one run of the model (MinRCPBstRCB) and exclude model building times.

The solution times for all of our experiments for RCPB versus RCB
is shown in Figure 5 where solution time is in logarithmic scale (Model
building times are excluded from these times. Model building times are
1.67 seconds for the smallest protein and 22.02 for the largest protein.
We note that for the same protein with different RCB values, the model
has to be built only once). Each point corresponds to a single run of the
model (MinRCPBstRCB) for one protein and one RCB value. 337 out of
360 instances can be solved within the time limit of 3600 seconds. For the
remaining 23 instances, the sequence found at the end of 3600 seconds is
guaranteed to be within 0.56% of the true optimal, on the average. Solution
times clearly increase as the sequences get longer. We also note that for
six instances, there is no feasible solution, meaning that one cannot find a
feasible sequence with a RCB smaller than the input value. Again, we ran
our model for the largest protein with 35,213 amino acids. The solver was
not able to generate an optimal solution within four hours. As mentioned
above, we believe that for such very large proteins, a divide and conquer
approach may be used without sacrificing much from optimality.

5 Codon Optimization Considering Secondary
Structures

Many RNAs are known to fold in on themselves to be thermodynamically
more stable. The particular folding pattern is described as a secondary
structure which is defined as a set of hydrogen-bonding base pairs (such
as Watson-Crick pairs, A-U and C-G). Secondary structures in messenger
RNA are known to have an effect on gene expression and protein pro-
duction (Kudla et al., 2009). A recent extensive design-of-experiments
study shows that mRNA secondary structures have the biggest effect on
translation efficiency and less stable structures (i.e., less folding), especi-
ally around the start codon, increases translation efficiency significantly
(Cambray et al., 2018). A number of gene design tools provide functio-
nality regarding mRNA secondary structures (Gould et al., 2014). mRNA
optimizer (Gaspar et al., 2013) uses a simulated annealing heuristic and
a pseudo-energy assessor to predict the energy level of a given design.
Visual Gene Developer (Jung and McDonald, 2011) asks user to specify
a range of energy levels for a part of the gene and modifies the gene in an
ad-hoc manner until predicted energy level falls inside this range. D-Tailor
(Guimaraes et al., 2014) only allows one to see the predicted secondary
structure of a given sequence designed by the tool. As such, current tools
require one to generate a set of codon designs and their mRNA secondary
structures are predicted approximately or using folding packages such as
Mfold (Zuker, 2003). This may be time consuming especially when there
is a large number of candidate sequences as is the case in codon optimiza-
tion. Energy level or the stability of the secondary structure is not formally
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posed as a formal putative objective in codon optimization in the earlier
literature, to the best of our knowledge.

In this section, we formulate the simultaneous optimization of codon
sequence and mRNA secondary structures problem using a bi-level mixed
integer linear programming approach. We note that integer programming
formulations are previously used to predict mRNA secondary structures
(Sato et al., 2011, Poolsap et al., 2009) given a fixed nucleotide (therefore,
a fixed codon) sequence. We allow the possibility of reasonably general
secondary structures with simple pseudoknots in our formulation.

A simple pseudoknot is depicted in Figure 6. A simple pseudoknot
needs to satisfy the following set of conditions: i-) Each nucleotide can be
paired to at most one other nucleotide (and these pairings should be one of
the allowed pairings, e.g., A-U, C-G) ii-) A base pair from above (below)
the sequence cannot cross another base pair above (below) the sequence iii-
) A nucleotide cannot be paired with another nucleotide within a distance
of τ iv-) The beginning of all base pairs above the sequence should be
before the beginning of any base pair below the sequence v-) The end of
all base pairs above the sequence should be before the end of any base pair
below the sequence. Given a nucleotide sequence, it is assumed that the
secondary structure that will be formed is the one that gives the minimum
free energy. The energy function depends on the adjacent base pairs (or
stacking pairs), i.e., nucleotides k and ℓ paired through letters m and n

and nucleotides k + 1 and ℓ − 1 paired through letters o and p lead to
an energy level µmnop. It is further assumed that stacking pairs below
the sequence are penalized with a weight ρ ≤ 1 (Rivas and Eddy, 1999).
Any loop region in a pseudoknot can potentially have its own secondary
structure; such structures are called recursive pseudoknots. Akutsu (2000)
develops a dynamic programming algorithm to find the minimum energy
folding for recursive pseudoknots. The complexity of this algorithm is
O(n5) where n is the number of nucleotides in the sequence. The use of
such algorithms is not viable, especially when one has flexibility in codon
choice, given the large number of nucleotides in typical genes. We finally
note that finding the minimum energy folding for structures more general
than recursive pseudoknots is NP-Hard (Akutsu, 2000).

Fig. 6. Simple pseudoknot (and its linear organization on the right). Dashed lines
correspond to base pairs.

Part of our MILP formulation has similarities with the secondary
structure prediction formulation in Poolsap et al. (2009). However, our
formulation handles the pseudoknot specific conditions (conditions iv and
v above) in a more compact manner, has the flexibility to choose any of
the synonymous codons for each amino acid and creates the association
between codon sequences and nucleotide sequences. We now describe our
formulation. Let xij be a binary variable which takes on the value 1 if
the amino acid in the ith sequence is assigned to codon j and 0 otherwise.
Let ykn be a binary variable which has value 1 if the kth nucleotide in
the sequence is assigned to letter n and 0 otherwise. Let ukℓ be a binary
variable which has value 1 if the kth nucleotide is paired with ℓth nucle-
otide from above the sequence and 0 otherwise. ukℓ is similarly defined
for pairing from below the sequence. The binary variables umn

kℓ and umn
kℓ

specify whether pairing forkth and ℓth nucleotides is through lettersm and
n. Finally the binary decision variable wmnop

kℓ specifies whether nucleo-
tides k and ℓ are paired through letters m and n while at the same time
nucleotides k + 1 and ℓ− 1 are paired through letters o and p forming a

stacking pair of the type omnp above the sequence. The variable wmnop
kℓ

is defined similarly for stacking pairs below the sequence.
Define θ(k) = k− 3⌊(k− 1)/3⌋. This function together with ⌈k/3⌉

is used to create a correspondence between the codons and letters in the
sequence. For example, the 13th letter in the sequence is defined as the
first letter (θ(13) = 1) of the fifth assigned codon (⌈13/3⌉ = 5) in the
sequence. Let λjk define the kth nucleotide in codon j. Our bi-level MILP
formulation (MaxFECOstCAI) is as follows:

(MaxFECOstCAI)

maxh(x,y) (24)

s.t.
∑

j∈K[i]

xij = 1, (25)

N∑
i=1

∑
j∈K[i]

ln(τ([i], j))xij ≥ N ln(αCAI), (26)

ykn −
∑

j∈K[⌈k/3⌉]

x⌈k/3⌉,j 1{λj,θ(k)=n} = 0, (27)

xij , ykn ∈ {0, 1}, (28)

where h(x,y) =

min
∑
k,ℓ

∑
mn,op

(
µmnop wmnop

kℓ + ρµmnop wmnop
kℓ

)
(29)

s.t. umn
kℓ −

1

2
(ykm + yℓn) ≤ 0, (30)

umn
kℓ −

1

2
(ykm + yℓn) ≤ 0, (31)

ukℓ −
∑
mn

umn
kℓ = 0, (32)

ukℓ −
∑
mn

umn
kℓ = 0, (33)

∑
ℓ

ukℓ +
∑
ℓ

ukℓ +
∑
ℓ′

uℓ′k +
∑
ℓ′

uℓ′k ≤ 1, (34)

∑
k′<k

uk′ℓ +
∑
ℓ′>ℓ

ukℓ′ ≤ 1, k < ℓ,

(35)∑
k′<k

uk′ℓ +
∑
ℓ′>ℓ

ukℓ′ ≤ 1, k < ℓ,

(36)∑
h

ukh +
∑
h

uℓh ≤ 1, ℓ < k,

(37)∑
h

uhk +
∑
h

uhℓ ≤ 1, ℓ < k,

(38)∑
ℓ≤k−τ

ukℓ +
∑

ℓ≤k−τ

ukℓ = 0, (39)

wmnop
kℓ −

1

2

(
umn
kℓ + uop

k+1,ℓ−1

)
≤ 0, (40)

wmnop
kℓ −

1

2

(
umn
kℓ + uop

k+1,ℓ−1

)
≤ 0, (41)

ukℓ, ukℓ, u
mn
kℓ , umn

kℓ , wmnop
kℓ , wmnop

kℓ ∈ {0, 1}. (42)

The first level of (MaxFECOstCAI) involves determining codon designs
that will minimize the folding in the secondary structures subject to con-
straint (lower bound) on the CAI value. The decision variables in this level
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are x = (xij) and y = (ykn). Objective (24) maximizes the weighted
sum of free energies associated with stacking pairs in the sequence defined
by h(x,y) and determined in the second level of (MaxFECOstCAI). Con-
straints (25) ensure that each amino acid is assigned to one codon that it can
be expressed with. Constraint (26) ensures that the CAI value of the codon
assignment does not fall below the input value αCAI . Constraints (27)
convert the codon assignments to nucleotide assignments in the sequence.
For example, if the 5th amino acid in the sequence (Cysteine) is assigned
the codon UGC, this constraint sets the 13th, 14th and 15th nucleotides to
letters U, G and C, respectively.

The second level of (MaxFECOstCAI) involves predicting the folding
structure given the codon assignments in the first level. Objective (29)
minimizes the weighted sum of free energies associated with stacking
pairs in the sequence. Constraints (30) allow a pairing of nucleotides k

and ℓ through letters m and n above the sequence only if kth nucleotide is
letter m and ℓth nucleotide is letter n. Constraints (31) are used similarly
for pairing below the sequence. Constraints (32) and (33) specify whether
any two nucleotides are paired above and below the sequence. Constraints
(34) ensure that each nucleotide is paired with at most one nucleotide,
before or after, above or below the sequence. Constraints (35) ensure
that base pairs above the sequence do not cross each other. Constraints
(36) ensure that base pairs below the sequence do not cross each other.
Constraints (37) and (38) ensure that the base pairings do not violate the
simple pseudoknot structure. Constraints (39) ensure that bases that are
very close to each other are not paired together. Constraints (40) specify
whether base pairs (k, ℓ) and (k + 1, ℓ − 1) are stacked together with
letters (m,n) and (o, p) above the sequence. Constraints (41) are defined
similarly for stacking pairs below the sequence. Constraints (42) ensure
that all decision variables are binary. All constraints are defined for all
possible values of the free indices, unless stated otherwise.

The formulation (MaxFECOstCAI) is flexible enough to incorporate
other objectives and constraints. For example, one can include constraints
such that certain nucleotide subsequences are avoided (forbidden motifs)
or used (desired motifs) to the extent possible. For example, if a motif
(m1,m2, . . . ,mq) needs to be avoided altogether, one can incorporate
the constraint:

q∑
ℓ=1

yk+ℓ,mℓ
≤ q − 1, k = 0, . . . , N − q. (43)

One can also count the number of times such motifs are used by introducing
additional decision variables and use them to state constraints regarding
their total count. Finally, it is easy to revise the formulation to consider a
portion of the sequence if one is interested in folding energy only in that
particular part of the sequence.

Solving bi-level programs in general is very difficult (DeNegre and
Ralphs, 2009) primarily because the objective or the constraints in the
first level (h(x,y) in our case) are implicitly defined by the second level
optimization problem. Therefore, we utilize an alternative approximate
approach. It is well-known that free energy parameters for structures that
use A-U nucleotide pairs instead of C-G nucleotide pairs are less nega-
tive leading to less stable secondary structures. Therefore, if the codon
assignments are determined such that the resulting nucleotide sequence is
A-U rich, one would expect that the resulting secondary structures are less
stable and more efficient in translation. In fact, the negative correlation
between A-U content and folding has been shown in earlier studies (Sef-
fens and Digby, 1999, Bentele et al., 2013). In light of these, we set the
objective of the first level problem as maximizing the total number of A
and U nucleotides.

(MaxAUstCAI)
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Fig. 7. Solution times for Codon Optimization Considering Secondary Structures: Solution
times represent the sum of the solution time of the model (MaxAUstCAI) and time of the
prediction obtained through model (29-42) and exclude model building times.

max
∑
k

ykA + (1 + δ)
∑
k

ykU (44)

s.t.
∑

j∈K[i]

xij = 1, (45)

N∑
i=1

∑
j∈K[i]

ln(τ([i], j))xij ≥ N ln(αCAI), (46)

ykn −
∑

j∈K[⌈k/3⌉]

x⌈k/3⌉,j 1{λj,θ(k)=n} = 0, (47)

xij , ykn ∈ {0, 1}. (48)

We use a different weight for the number of U nucleotides in the objective
function (44) through the parameter δ ̸= 0. This is to create an imbala-
nce between the number of A and U nucleotides and to further decrease
the possibility of secondary structure formation. The resulting sequence
obtained from the model (MaxAUstCAI) can be used in the model given
by (29-42), now to predict the secondary structures and resulting energy
levels.

We randomly select twelve smaller proteins from The UniProt Data-
base in order to test the effectiveness of our formulation. We use the
Watson-Crick pairs (A-U and C-G), but ignore the Wobble pairs (U-G)
in our analysis. We use the stacking energy parameters provided in Pool-
sap et al. (2009). For each protein, for ten different values of αCAI

(0.55, 0.60, . . . , 0.95, 1.0) we run the model (MaxAUstCAI) to obtain
codon sequences. In doing this, we use fitness values of Escherichia coli.
Resulting codon sequences are fed in to model (29-42) to predict secon-
dary structures for three different values of ρ: 1, 0.8 and 0.6. We use a
value of δ = 0.001 in the objective function of (MaxAUstCAI). A total of
360 problems are solved. The software and hardware specifications are the
same as before. The total solution times, i.e., solution time of (MaxAU-
stCAI) plus the solution time of model (29-42), are provided in Figure 7
where the y-axis is in logarithmic scale. (Model building times are exclu-
ded from these times. Combined model building times are 1.94 seconds
for the smallest protein and 58.02 seconds for the largest protein).

We observe that while the solution times are reasonable for small genes,
they quickly get large as the number of amino acids increase. This is due
to a large number of binary variables and constraints in the formulation.
We note, however, that almost all of the solution time is spent for energy
prediction. The solution time for the model (MaxAUstCAI) is less than
0.1 seconds for all proteins, CAI and ρ values. This means that codon
sequences that are approximately on the CAI folding energy frontier can
be determined very quickly.



“main_4” — 2019/9/3 — page 8 — #8
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Fig. 8. Efficient frontier of CAI and Folding Energy/AU-Content for protein
PSBX_CYAPA, ρ = 1: The primary y-axis and squares represent the AU-Content in
the number of A and U nucleotides; the secondary y-axis and circles represent folding
energy in kcal/mol.

Table 1. Summary Results for Codon Optimization Considering
Secondary Structures

CAI 0.70 0.75 0.80 0.85 0.90 0.95 1.00

AU-Content 0.733 0.733 0.667 0.633 0.567 0.500 0.400
Energy Level 0.653 0.655 0.665 0.696 0.699 0.821 1.000

An example is provided in Figure 8 for protein PSBX_CYAPA which
has 39 amino acids. The horizontal axis is Codon Adaptation Index. On the
primary vertical axis, we have AU-Content which is presented as the num-
ber of nucleotides which are letter A or U (out of 117 nucleotides). In the
secondary vertical axis, we have free energy of the predicted secondary
structure of the codon sequence in kcal/mol. As one can see, as mini-
mum CAI level is allowed to be lower, the resulting codon sequences can
have more A and U nucleotides and are less stable. For example, when
CAI=1.0, AU-Content=62 and folding energy=-48.4 kcal/mol whereas
when CAI=0.9, AU-Content=78 and folding energy=-37.1 kcal/mol.

The summary results for all twelve proteins are presented in Table 1
for ρ = 1. In this case, AU-content is presented as a fraction of the total
number of nucleotides in a given sequence and free energy is presented
as a fraction of the free energy when CAI is equal to 1. Our results show
that minimum free energy can be increased (can be made less negative)
significantly when codons can be optimized. Not using the most frequent
codons and allowing CAI to be at 0.95, for example, may increase the free
energy of the secondary structures by 17.9% (note that all minimum free
energies are negative) making them significantly less stable and allowing
more efficient translation.

6 A Comparison with the Literature and
Discussion

Methodical gene optimization is considered to be impractical as it is intra-
ctable to consider all possible number of gene sequences for an average
size amino acid (Welch et al., 2009). Therefore, most codon optimization
solutions developed in the past use the word “optimization” vaguely. In the
pioneering solutions, codon optimization simply refers to replacing rare
codons with frequently used ones in a host organism, essentially following
a “one amino acid - one codon” approach. Examples include Codon Opti-
mizer (Fuglsang, 2003), UpGene (Gao et al., 2004) and JCat (Grote et al.,

2005). As this approach may lead to an imbalanced use of tRNA, a number
of solutions such as DNAWorks (Hoover and Lubkowski, 2002), GeneDe-
signer (Villalobos et al., 2006) and OPTIMIZER (Puigbo et al., 2007) also
provide Monte Carlo algorithms that randomly select the codons based on
the observed frequencies of codons in the host organism.

More recent solutions consider criteria other than codon bias such
as codon context bias and motif avoidance and provide multi-objective
functionality. These solutions are EuGene (Gaspar et al., 2012), COOL
(Chin et al., 2014), D-Tailor (Guimaraes et al., 2014), COStar (Liu et al.,
2014) and a study by Gonzalez-Sanchez et al. (2019). However all of these
solutions use heuristics and thus do not provide a mathematical guarantee
of obtaining an optimal solution (or Pareto optimal solutions). COOL (Chin
et al., 2014) and D-Tailor (Guimaraes et al., 2014) use genetic algorithms,
EuGene (Gaspar et al., 2012) uses a simulated annealing heuristic along
with a genetic algorithm, COStar (Liu et al., 2014) uses a D-star Lite-
based dynamic search algorithm and Gonzalez-Sanchez et al. (2019) use
an artificial bee colony algorithm.

To our knowledge, there are only four papers in the literature that pro-
vide a mathematical guarantee of obtaining an optimal solution for the gene
design problems that are considered. Three of these papers (Skiena, 2001,
Satya et al., 2003, Condon and Thachuk (2012)) consider Codon Adapta-
tion Index along with the use of desired or forbidden motifs as objectives
and provide polynomial-time algorithms. A study by Papamichail et al.
(2018) considers codon context bias and provides a guarantee of optimality.
When codon context bias (codon pair bias) is considered alone, the authors
develop anO(N) algorithm. The authors show that when the codon bias is
fixed (i.e., the frequencies of the codons used are to remain constant), the
problem reduces to a version of the traveling salesman problem and can
be solved with a time complexity of O(N41). As the time requirements
are not practical for even moderately sized protein sequences, the authors
suggest a simple branch and bound algorithm. This algorithm does not
scale either and the authors resort to a simulated annealing heuristic.

The present paper is the first to study the synthetic gene design pro-
blem using a mathematical programming approach. We show that various
criteria, such as codon bias, codon pair bias and relative codon bias can
be easily modeled using this approach in a multi-objective framework.
The mathematical programming approach allows one to compute a set
of Pareto optimal solutions. We show that one can obtain gene designs
with a mathematical guarantee of (Pareto) optimality using this approach
for real-size proteins in reasonable solution times. Our numerical results
show that our model (maxCPBstCAI) can solve the same problem attacked
by Papamichail et al. (2018) for very large proteins, with a guarantee of
optimality, within six seconds. For all sequences that we analyzed, our
approach leads to significantly shorter solution times and better sequences
in terms of Codon Pair Bias. This paper is also the first paper that studies
codon optimization problem while also considering secondary structure
formation. Considering only critical parts of the sequence for secondary
structure formation will make this approach viable for proteins that are
larger than what we consider here.

The significance of our work derives also from the fact that general-
purpose optimization software (such as Gurobi used in this work) can
be used for solving mathematical programming problems (namely, mixed
integer linear programming problems) obviating the need to develop custo-
mized heuristics or optimization algorithms (and modify them as new
criteria are found to be important in gene expression). These software
solutions are continually being developed further and are accessible to
academic users gratis, as was the case in the present paper.
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